We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

The cGAS–STING pathway in diabetic retinopathy and age-related macular degeneration

    Bo Hu

    Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55414, USA

    ,
    Jian-Xing Ma

    Department of Biochemistry, Wake Forest University School of Medicine, Winston Salem, NC 27101, USA

    &
    Adam S Duerfeldt

    *Author for correspondence:

    E-mail Address: aduerfel@umn.edu

    Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55414, USA

    Published Online:https://doi.org/10.4155/fmc-2022-0301

    Diabetic retinopathy and age-related macular degeneration are common retinal diseases with shared pathophysiology, including oxidative stress-induced inflammation. Cellular mechanisms responsible for converting oxidative stress into retinal damage are ill-defined but have begun to clarify. One common outcome of retinal oxidative stress is mitochondrial damage and subsequent release of mitochondrial DNA into the cytosol. This leads to activation of the cGAS–STING pathway, resulting in interferon release and disease-amplifying inflammation. This review summarizes the evolving link between aberrant cGAS–STING signaling and inflammation in common retinal diseases and provides prospective for targeting this system in diabetic retinopathy and age-related macular degeneration. Further defining the roles of this system in the retina is expected to reveal new disease pathology and novel therapeutic approaches.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Gulliford MC, Dodhia H, Chamley M et al. Socio-economic and ethnic inequalities in diabetes retinal screening. Diabet. Med. 27(3), 282–288 (2010).
    • 2. Mansour SE, Browning DJ, Wong K et al. The evolving treatment of diabetic retinopathy. OPTH 14, 653–678 (2020).
    • 3. Evans JR, Michelessi M, Virgili G. Laser photocoagulation for proliferative diabetic retinopathy. Cochrane Database Syst. Rev. 11, CD011234 (.2014).
    • 4. Osaadon P, Fagan XJ, Lifshitz T et al. A review of anti-VEGF agents for proliferative diabetic retinopathy. Eye (Lond.) 28(5), 510–520 (2014).
    • 5. Yang S, Zhao J, Sun X. Resistance to anti-VEGF therapy in neovascular age-related macular degeneration: a comprehensive review. Drug Des. Devel Ther. 10, 1857–1867 (2016). • Thoroughly explores drawbacks to current therapies, providing impetus to approach these diseases from new angles.
    • 6. Ding J, Wong TY. Current epidemiology of diabetic retinopathy and diabetic macular edema. Curr. Diab. Rep. 12(4), 346–354 (2012).
    • 7. Apte RS, Chen DS, Ferrara N. VEGF in signaling and disease: beyond discovery and development. Cell 176(6), 1248–1264 (2019).
    • 8. Ishikawa K, Kannan R, Hinton DR. Molecular mechanisms of subretinal fibrosis in age-related macular degeneration. Exp. Eye Res. 142, 19–25 (2019).
    • 9. Roy S, Amin S, Roy S. Retinal fibrosis in diabetic retinopathy. Exp. Eye Res. 142, 71–75 (2016).
    • 10. Yang M, So KF, Lam WC, Lo ACY. Novel programmed cell death as therapeutic targets in age-related macular degeneration? Int. J. Mol. Sci. 21(19), e7279 (2020).
    • 11. Feenstra DJ, Yego EC, Mohr S. Modes of retinal cell death in diabetic retinopathy. J. Clin. Exp. Ophthalmol. 4(5), 298 (2013).
    • 12. Whitcup SM, Nussenblatt RB, Lightman SL et al. Inflammation in retinal disease. Int. J. Inflam. 2013, 724648 (2013).
    • 13. Madsen-Bouterse SA, Mohammad G et al. Role of mitochondrial DNA damage in the development of diabetic retinopathy, and the metabolic memory phenomenon associated with its progression. Antioxid. Redox. Signal. 13(6), 797–805 (2010).
    • 14. Margolis SR, Wilson SC, Vance RE. Evolutionary origins of cGAS–STING signaling. Trends Immunol. 38(10), 733–743 (2017).
    • 15. Motwani M, Pesiridis S, Fitzgerald KA. DNA sensing by the cGAS–STING pathway in health and disease. Nat. Rev. Genet. 20(11), 657–674 (2019).
    • 16. Millman A, Melamed S, Amitai G, Sorek R. Diversity and classification of cyclic-oligonucleotide-based anti-phage signalling systems. Nat. Microbiol. 5(12), 1608–1615 (2020).
    • 17. Lowey B, Whiteley AT, Keszei AFA et al. CBASS immunity uses CARF-related effectors to sense 3′-5′- and 2′-5′-linked cyclic oligonucleotide signals and protect bacteria from phage infection. Cell 182(1), 38–49.e17 (2020).
    • 18. Hopfner KP, Hornung V. Molecular mechanisms and cellular functions of cGAS–STING signalling. Nat. Rev. Mol. Cell Biol. 21(9), 501–521 (2020). • Well-written and thorough review of cGAS–STING signaling with emphasis on protein structure.
    • 19. Yan N. Immune diseases associated with TREX1 and STING dysfunction. J. Interferon Cytokine Res. 37(5), 198–206 (2017).
    • 20. Civril F, Deimling T, de Oliveira Mann CC et al. Structural mechanism of cytosolic DNA sensing by cGAS. Nature 498(7454), 332–337 (2013).
    • 21. Yu L, Liu P. Cytosolic DNA sensing by cGAS: regulation, function, and human diseases. Sig. Transduct. Target Ther. 6(1), 170 (2021).
    • 22. Du M, Chen ZJ. DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Science 361(6403), 704–709 (2018).
    • 23. Xie W, Lama L, Adura C et al. Human cGAS catalytic domain has an additional DNA-binding interface that enhances enzymatic activity and liquid-phase condensation. Proc. Natl Acad. Sci. USA 116(24), 11946–11955 (2019).
    • 24. Zhou W, Mohr L, Maciejowski J et al. cGAS phase separation inhibits TREX1-mediated DNA degradation and enhances cytosolic DNA sensing. Mol. Cell 81(4), 739–755; e7 (2021).
    • 25. Shang G, Zhang C, Chen ZJ, Bai XC et al. Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP–AMP. Nature 567(7748), 389–393 (2019).
    • 26. Ergun SL, Fernandez D, Weiss TM et al. STING polymer structure reveals mechanisms for activation, hyperactivation, and inhibition. Cell 178(2), 290–301; e10 (2019).
    • 27. Lu D, Shang G, Li J et al. Activation of STING by targeting a pocket in the transmembrane domain. Nature 604(7906), 557–562 (2022).
    • 28. Danilchanka O, Mekalanos JJ. Cyclic dinucleotides and the innate immune response. Cell 154(5), 962–970 (2013).
    • 29. Liu N, Pang X, Zhang H et al. The cGAS–STING pathway in bacterial infection and bacterial immunity. Front. Immunol. 12, 814709 (2022).
    • 30. Zhang C, Shang G, Gui X et al. Structural basis of STING binding with and phosphorylation by TBK1. Nature 567(7748), 394–398 (2019).
    • 31. Zhou W, Whiteley AT, de Oliveira Mann CC et al. Structure of the human cGAS-DNA complex reveals enhanced control of immune surveillance. Cell 174(2), 300–311.e11 (2018).
    • 32. Mukai K, Konno H, Akiba T et al. Activation of STING requires palmitoylation at the Golgi. Nat. Commun. 7, 11932 (2016).
    • 33. Yum S, Li M, Fang Y et al. TBK1 recruitment to STING activates both IRF3 and NF-κB that mediate immune defense against tumors and viral infections. Proc. Natl Acad Sci. USA 118(14), e2100225118 (2021).
    • 34. Dunphy G, Flannery SM, Almine JF et al. Non-canonical activation of the DNA sensing adaptor STING by ATM and IFI16 mediates NF-κB signaling after nuclear DNA damage. Molecular Cell 71(5), 745–760.e5 (2018).
    • 35. Wu X, Wu FH, Wang X et al. Molecular evolutionary and structural analysis of the cytosolic DNA sensor cGAS and STING. Nucleic Acids Res. 42(13), 8243–8257 (2014).
    • 36. Zhang D, Liu Y, Zhu Y et al. A non-canonical cGAS–STING–PERK pathway facilitates the translational program critical for senescence and organ fibrosis. Nat. Cell Biol. 24(5), 766–782 (2022).
    • 37. Unterholzner L, Dunphy G. cGAS-independent STING activation in response to DNA damage. Mol. Cell Oncol. 6(4), 1558682 (2019).
    • 38. Almine JF, O'Hare CA, Dunphy G et al. IFI16 and cGAS cooperate in the activation of STING during DNA sensing in human keratinocytes. Nat. Commun. 8, 14392 (2017).
    • 39. Liu Y, Jesus AA, Marrero B et al. Activated STING in a vascular and pulmonary syndrome. N. Engl. J. Med. 371(6), 507–518 (2014).
    • 40. Cooray S, Henderson R, Solebo AL et al. Retinal vasculopathy in STING-associated vasculitis of infancy (SAVI). Rheumatology (Oxford) 60(10), e351–e353 (2021).
    • 41. Warner JD, Irizarry-Caro RA, Bennion BG et al. STING-associated vasculopathy develops independently of IRF3 in mice. J. Exp. Med. 214(11), 3279–3292 (2017).
    • 42. Patel S, Jin L. TMEM173 variants and potential importance to human biology and disease. Genes Immun. 20(1), 82–89 (2019).
    • 43. Zhao Q, Wei Y, Pandol SJ et al. STING signaling promotes inflammation in experimental acute pancreatitis. Gastroenterology 154(6), 1822–1835.e2 (2018).
    • 44. Zhang Y, Chen W, Wang Y. STING is an essential regulator of heart inflammation and fibrosis in mice with pathological cardiac hypertrophy via endoplasmic reticulum (ER) stress. Biomed. Pharmacother. 125, 110022 (2020).
    • 45. Ahn J, Son S, Oliveira SC et al. STING-dependent signaling underlies IL-10 controlled inflammatory colitis. Cell Rep. 21(13), 3873–3884 (2017).
    • 46. Li Q, Cao Y, Dang C et al. Inhibition of double-strand DNA-sensing cGAS ameliorates brain injury after ischemic stroke. EMBO Mol. Med. 12(4), e11002 (2020).
    • 47. Hinkle JT, Patel J, Panicker N et al. STING mediates neurodegeneration and neuroinflammation in nigrostriatal α-synucleinopathy. Proc. Natl Acad. Sci. USA 119(15), e2118819119 (2022).
    • 48. Chen B, Rao X, Wang X et al. cGAS–STING signaling pathway and liver disease: from basic research to clinical practice. Front. Pharmacol. 12, 719644 (2021).
    • 49. Kerur N, Fukuda S, Banerjee D et al. cGAS drives noncanonical-inflammasome activation in age-related macular degeneration. Nat. Med. 24(1), 50–61 (2018).
    • 50. Li A, Yi M, Qin S et al. Activating cGAS–STING pathway for the optimal effect of cancer immunotherapy. J. Hematol. Oncol. 12(1), 35 (2019).
    • 51. Ruiz-Moreno JS, Hamann L, Shah JA et al. CAPNETZ Study Group. The common HAQ STING variant impairs cGAS-dependent antibacterial responses and is associated with susceptibility to Legionnaires' disease in humans. PLOS Pathog. 14(1), e1006829 (2018).
    • 52. WHO. Fact Sheet: Diabetes (2022). www.who.int/news-room/fact-sheets/detail/diabetes
    • 53. Lee R, Wong TY, Sabanayagam C et al. Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vis. (Lond.) 2, 17 (2015).
    • 54. Duh EJ, Sun JK, Stitt AW. Diabetic retinopathy: current understanding, mechanisms, and treatment strategies. JCI Insight 2(14), 93751 (2017).
    • 55. Lechner J, O'Leary OE, Stitt AW. The pathology associated with diabetic retinopathy. Vision Res. 139, 7–14 (2017).
    • 56. Lorenzi M. The polyol pathway as a mechanism for diabetic retinopathy: attractive, elusive, and resilient. Exp. Diabetes Res. 2007, 61038 (2007).
    • 57. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ. Res. 107(9), 1058–1070 (2010).
    • 58. Zong H, Ward M, Stitt AW. AGEs, RAGE, and diabetic retinopathy. Curr. Diab. Rep. 11(4), 244–252 (2011).
    • 59. Prakash M, Sun JK, King GL. The role of protein kinase C in diabetic retinopathy. In: Diabetic Retinopathy. Duh EJ (Ed.). Humana Press, MD, USA, 207–216 (2008).
    • 60. Noda K, Nakao S, Ishida S, Ishibashi T. Leukocyte adhesion molecules in diabetic retinopathy. J. Ophthalmol. 2012, 279037 (2012).
    • 61. Shin ES, Sorenson CM, Sheibani N. Diabetes and retinal vascular dysfunction. J. Ophthalmic Vis. Res. 9(3), 362–373 (2014).
    • 62. Park DY, Lee J, Kim J et al. Plastic roles of pericytes in the blood–retinal barrier. Nat. Commun. 8, 15296 (2017).
    • 63. Nentwich MM, Ulbig MW. Diabetic retinopathy – ocular complications of diabetes mellitus. World J. Diabetes 6(3), 489–499 (2015).
    • 64. Jonas JB, Cheung CMG, Panda-Jonas S. Updates on the epidemiology of age-related macular degeneration. Asia Pac. J. Ophthalmol. (Phila.) 6(6), 493–497 (2017).
    • 65. Deng Y, Qiao L, Du M et al. Age-related macular degeneration: epidemiology, genetics, pathophysiology, diagnosis, and targeted therapy. Genes Dis. 9(1), 62–79 (2022).
    • 66. Fisher CR, Ferrington DA. Perspective on AMD pathobiology: a bioenergetic crisis in the RPE. Invest. Ophthalmol. Vis. Sci. 59(4), AMD41–AMD47 (2018). •• Perspective on the pathophysiology of age-related macular degeneration that links cellular energetic crisis to damage in the retina.
    • 67. Crabb JW, Miyagi M, Gu X et al. Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proc. Natl Acad. Sci. USA 99(23), 14682–14687 (2002).
    • 68. Tang M, Pavlou S, Chen M et al. cGAS–STING pathway activation in murine retina. Acta Ophthalmol. 97, S263 (2019).
    • 69. Zou M, Ke Q, Nie Q et al. Inhibition of cGAS–STING by JQ1 alleviates oxidative stress-induced retina inflammation and degeneration. Cell Death Differ. 29(9), 1816–1833 (2022). • Epigenetic approaches to cGAS–STING are valuable not only for improvement in inflammatory disease, but carry implications for cancer therapy as well.
    • 70. Liu H, Strizhakova A, Hose SL et al. The role of the STING/type I IFN signaling pathway in diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 63(7), 413 (2022).
    • 71. Jadeja RN, Martin PM. Oxidative stress and inflammation in retinal degeneration. Antioxidants (Basel) 10(5), 790 (2021).
    • 72. Ogilvy AJ, Shen D, Wang Y et al. Implications of DNA leakage in eyes of mutant mice. Ultrastruct. Pathol. 38(5), 335–343 (2014).
    • 73. Chen Q, Tang L, Zhang Y et al. STING up-regulates VEGF expression in oxidative stress-induced senescence of retinal pigment epithelium via NF-κB/HIF-1α pathway. Life Sci. 293, 120089 (2022).
    • 74. Dib B, Lin H, Maidana DE et al. Mitochondrial DNA has a pro-inflammatory role in AMD. Biochim. Biophys. Acta 1853(11), 2897–2906 (2015).
    • 75. Guo Y, Gu R, Gan D et al. Mitochondrial DNA drives noncanonical inflammation activation via cGAS–STING signaling pathway in retinal microvascular endothelial cells. Cell Commun. Signal. 18(1), 172 (2020).
    • 76. Guo Y, Gan D, Hu F et al. Intravitreal injection of mitochondrial DNA induces cell damage and retinal dysfunction in rats. Biol. Res. 55(1), 22 (2022).
    • 77. Dou X, Duerfeldt AS. Small-molecule modulation of PPARs for the treatment of prevalent vascular retinal diseases. IJMS 21(23), 9251 (2020).
    • 78. Ma X, Wu W, Liang W et al. Modulation of cGAS–STING signaling by PPARα in a mouse model of ischemia-induced retinopathy. Proc. Natl Acad. Sci. USA 119(48), e2208934119 (2022). •• Demonstrates initial use of peroxisome proliferator-activated receptor alpha agonists, a class of marketed pharmaceuticals, in modulating cGAS–STING signaling, with implications for development of oral therapeutics.
    • 79. Kim S, Cho CS, Han K et al. Structural variation of Alu element and human disease. Genomics Inform. 14(3), 70–77 (2016).
    • 80. Fukuda S, Narendran S, Varshney A et al. Alu complementary DNA is enriched in atrophic macular degeneration and triggers retinal pigmented epithelium toxicity via cytosolic innate immunity. Sci. Adv. 7(40), eabj3658 (2021).
    • 81. Li J, Zhang F, Bian W et al. cGAS inhibition alleviates Alu RNA-induced immune responses and cytotoxicity in retinal pigmented epithelium. Cell Biosci. 12(1), 116 (2022).
    • 82. Fukuda S, Varshney A, Fowler BJ et al. Cytoplasmic synthesis of endogenous Alu complementary DNA via reverse transcription and implications in age-related macular degeneration. Proc. Natl Acad. Sci. USA 118(6), e2022751118 (2021). • The role of retrotransposon activity in inflammatory disease is an emerging topic of research: this group does excellent work in tying that activity to cGAS–STING.
    • 83. Schustak J, Twarog M, Wu X et al. Mechanism of nucleic acid sensing in retinal pigment epithelium (RPE): RIG-I mediates type I interferon response in human RPE. J. Immunol. Res. 2021, 1–14 (2021).
    • 84. Saada J, McAuley RJ, Marcatti M et al. Oxidative stress induces Z-DNA-binding protein 1-dependent activation of microglia via mtDNA released from retinal pigment epithelial cells. J. Biol. Chem. 298(1), 101523 (2022).